
crayftn(1) Last changed: 12-22-2011

NAME
 ftn - Invokes the Cray Fortran Compiler

SYNOPSIS
 ftn
 [-A module_name[, module_name] ...]
 [-b bin_obj_file]
 [-c]
 [-d disable]
 [-D identifier[=value]]
 [-e enable]
 [-f source_form]
 [-F]
 [-g]
 [-G debug_lvl]
 [-h arg]
 [-I incldir]
 [-J dir_name]
 [-K trap=opt[, opt] ...]
 [-l libname]
 [-L ldir]
 [-m msg_lvl]
 [-M msgs]
 [-N col]
 [-o out_file]
 [-O opt[, opt] ...]
 [-p module_site]
 [-Q path]
 [-r list_opt]
 [-R runchk]
 [-rpath ldir]
 [-s size]
 [-S asm_file]
 [-T]
 [-U identifier[, identifier] ...]
 [-v]
 [-V]
 [-Wphase,"opt...",]
 [-x dirlist]
 [-X npes]
 [-Yphase,dirname]
 [--]
 sourcefile [sourcefile ...]

IMPLEMENTATION
 Cray Linux Environment (CLE)

DESCRIPTION
 The ftn command invokes the Cray Fortran Compiler. Typically, the
 command processes the input files named on the command line and
 generates a binary object file, and then loads the binary object file
 and generates the executable file a.out.

 When options are specified that are not available, the compiler
 ignores them and continues with the compilation.

 For a more detailed description of the ftn command, see the Cray
 Fortran Reference Manual. Information contained in this man page may
 differ from the reference manual. Where the information differs, this
 man page supersedes the information contained in the reference manual.

 The ftn command accepts the following options:

 -A module_name[,module_name] ...
 Directs the compiler to behave as if you entered a USE
 module_name statement for each module_namein your Fortran
 source code. The USE statements are entered in every program
 unit and interface body in the source file being compiled.

 -b bin_obj_file
 Disables the link step and saves the binary object file of
 your program in bin_obj_file.

 Only one input file is allowed when the -b bin_obj_file
 option is specified. If you have more than one input file,
 use the -c option instead. If only one input file is being
 processed and neither the -b nor -c option is specified, the
 binary object file of your program is not saved after the
 link step is completed.

 If both -b bin_obj_file and -c are specified, the link step
 is disabled and the binary object file is written to
 bin_obj_file.

 Default: disabled.

 -c Disables the link step and saves the binary object file
 version of your program in file.o, where file is the name of
 the source file. If there is more than one source file, a

 file.o is created for each input file specified.

 Default: off.

 -d disable, -e enable
 Disables or enables compiling options. To specify more than
 one compiling option, enter the options without separators
 between them; for example, -e aj. disable/enable can be one
 or more of the following options:

 Option Action

 0 Initializes all undefined local stack variables to
 0 (zero). If a user variable is of type character,
 it is initialized to NUL. The variables are
 initialized upon each execution of the procedure.

 Default: disabled.

 a Aborts compilation after encountering the first
 error.

 Default: disabled.

 A Treat all module variables as PUBLIC. Do not
 override any explicit PRIVATE statements or
 attributes. Disabling this option with -dA has the
 effect of including a PRIVATE statement in the
 specification part of the module.

 Default: enabled.

 b If enabled, issue an warning message rather than
 an error message when the compiler detects a call
 to a procedure with one or more dummy arguments
 having the TARGET, VOLATILE or ASYNCHRONOUS
 attribute and there is not an explicit interface
 definition.

 Default: disabled.

 B Generates binary output. If disabled, inhibits all
 optimization and allows only syntactic and
 semantic checking.

 Default: enabled.

 c Interface checking: use Cray's system modules to
 check library calls in a compilation. If you have
 a procedure with the same name as one in the
 library, you will get errors, as the compiler does
 not skip user-specified procedures when performing
 checks.

 Default: disabled.

 C Enable/disable some types of standard call site
 checking. The current Fortran standard requires
 that the number and types of arguments must agree
 between the caller and callee. These constraints
 are enforced in cases where the compiler can
 detect them, however, specifying -dC disables some
 of this error-checking, which may be necessary in
 order to get some older Fortran codes to compile.

 Note: If error-checking is disabled, unexpected
 compile-time or runtime errors may occur.

 In addition, the compiler by default attempts to
 detect situations in which an interface block
 should be specified but is not. Specifying -dC
 disables this type of checking as well.

 Default: enabled.

 d Controls a column-oriented debugging feature when
 using fixed source form. When enabled, the
 compiler replaces a D or d character appearing in
 column 1 of your source with a blank and treats
 the entire line as a valid source line. This
 feature is useful if you want to insert PRINT
 statements as part of your debugging process.

 Default: disabled.

 D Enables all debugging options. This option is
 equivalent to specifying the -O0, -G0, -g, -m2,
 -rl or -R bcdsp options.

 Default: disabled.

 E The -eE option allows existing declarations to

 duplicate the declarations contained in a used
 module. Only existing declarations that declare
 the function name or generic name in an EXTERNAL
 or type statement are allowable under this option.
 Therefore, you do not have to modify the older
 code by removing the existing declarations.
 Because the declarations are not removed, the use
 associated objects duplicates declarations already
 in the code, which is not standard conforming.
 However, this option allows the compiler to accept
 these statements as long as the declarations match
 the declarations in the module.

 Existing declarations of a procedure must match
 the interface definitions in the module; otherwise
 an error is generated.

 f Allows the creation of lower-case module .mod file
 names, in a manner similar to the -em option.

 Default: disabled.

 F Controls preprocessor expansion of macros in
 Fortran source lines.

 Default: enabled.

 g Allows branching into the code block for a DO or
 DO WHILE construct, which may be necessary in
 order to permit older codes to compile.

 Historically, codes used branches out of and into
 DO constructs. Current Fortran standards prohibit
 branching into a DO construct from outside of that
 construct and the compiler issues an error in this
 situation. Specifying the -eg option will allow
 codes with these constructs to compile, but
 performance may suffer as a result.

 Default: disabled.

 h Enables support for 8-bit and 16-bit INTEGER and
 LOGICAL types that use explicit kind or star
 values.

 By default (-eh), data objects declared as

 INTEGER(kind=1) or LOGICAL(kind=1) are 8 bits long
 and objects declared as INTEGER(kind=2) or
 LOGICAL(kind)=2 are 16 bits long. When this option
 is disabled (-dh), data objects declared as
 INTEGER(kind)=1, INTEGER(kind)=2, LOGICAL(kind)=1,
 or LOGICAL(kind)=2 are 32 bits long.

 Note: Vectorization of 8- and 16-bit objects is
 deferred.

 Default: enabled.

 I Treat all variables as if an IMPLICIT NONE
 statement had been specified. Do not override any
 IMPLICIT statements or explicit type statements.
 All variables must be typed.

 Default: disabled.

 j Execute DO loops at least once.

 Default: disabled.

 m When this option is enabled, the compiler creates
 .mod files to hold module information for future
 compiles. When it is disabled, and a module is
 compiled, the compiler deletes any existing
 MODULENAME.mod files it finds in the output
 directory before creating new module information
 in the .o file.

 By default, module files are written to the
 current working directory. You can use the -J
 dir_name option to specify an alternate output
 directory for .mod files only.

 Whether this option is enabled or disabled, the
 search order for satisfying module references in
 USE statements is as follows:

 1. The current working directory.

 2. Any directories or files specified with the -p
 option.

 3. Any directories specified with the -I option.

 4. Any directories or files specified with the
 FTN_MODULE_PATH environment variable.

 When searching within a directory, the compiler
 checks all the .mod files first, then the .ofiles,
 and then the .a files.

 Note: The compiler creates modules through the
 MODULE statement. A module is referenced with the
 USE statement. All .mod files are named
 modulename.mod, where modulename is the name of
 the module specified in the MODULE or USE
 statement.

 Default: disabled.

 n Generates messages to note nonstandard Fortran
 usage.

 Default: disabled.

 o Display to stderr the optimization options the
 compiler used for this compilation.

 Default: disabled.

 P Performs source preprocessing on Fortran source
 files, but does not compile. When specified,
 source code is included by #include directives but
 not by Fortran INCLUDE lines. Generates file.i,
 which contains the source code after the
 preprocessing has been performed and the effects
 applied to the source program.

 Default: disabled.

 q Aborts compilation if 100 or more errors are
 generated.

 Default: enabled.

 Q Controls whether or not the compiler accepts
 variable names that begin with a leading
 underscore (_) character. For example, when -e Q
 is specified, the compiler accepts _ANT as a

 variable name. Enabling this option can cause
 collisions with system name space; for example,
 library entry point names.

 Default: disabled.

 R Compiles all functions and subroutines as if they
 contained a RECURSIVE keyword.

 Default: disabled.

 s Scale the values of the count and count_rate
 arguments for the SYSTEM_CLOCK intrinsic function
 down by a factor of 2**14 (16384) if the storage
 size of the values of each of the count and
 count_rate arguments is 32 bits.

 Default: enabled.

 S Generates assembly language output and saves it in
 file.s. When both the -eS and -S asm_file options
 are specified, the -S asm_file option takes
 precedence.

 Default: disabled.

 v Allocate variables to static storage. These
 variables are treated as if they had appeared in a
 SAVE statement. Variables that are explicitly or
 implicitly defined as automatic variables are not
 allocated to static storage.

 The following types of variables are not allocated
 to static storage: automatic variables (explicitly
 or implicitly stated), variables declared with the
 AUTOMATIC attribute, variables allocated in an
 ALLOCATE statement, and local variables in
 explicit recursive procedures. Variables with the
 ALLOCATABLE attribute remain allocated upon
 procedure exit, unless explicitly deallocated, but
 they are not allocated in static memory. Variables
 in explicit recursive procedures consist of those
 in functions, in subroutines, and in internal
 procedures within functions and subroutines that
 have been defined with the RECURSIVE attribute.
 The STACK compiler directive overrides this

 option.

 Default: disabled.

 w Enables support for automatic memory allocation
 for allocatable variables and arrays that are on
 the left hand side of intrinsic assignment
 statements.

 Using this option may degrade runtime performance,
 even when automatic memory allocation is not
 needed. It can affect optimizations for a code
 region containing an assignment to allocatable
 variables or arrays; for example, by preventing
 loop fusion for multiple array syntax assignment
 statements with the same shape.

 Default: disabled.

 y (Deferred implementation) Adds information into
 the binary files that enables the linker to find
 the modules when used in subsequent compiles. The
 -d y option disables this information.
 Consequently, subsequent compiles that use these
 modules must specify the correct information on
 the linker command line.

 If the binary files for the Fortran modules are
 moved prior to the link step, specify -dy.
 Default: enabled.

 z Initialize all memory allocated by Fortran
 ALLOCATE statements to zero. This option applies
 only for the current source file and should be
 specified for each source file compilation where
 this behavior is desired. Default: disabled.

 Z Perform source preprocessing and compilation on
 Fortran source files. When specified, source code
 is included by both #include directives and
 Fortran INCLUDE lines. Generates file file.i,
 which contains the source code after the
 preprocessing has been performed and the effects
 applied to the source program.

 Default: disabled.

 -D identifier[=value]
 Defines variables used for source preprocessing as if they
 had been defined by a #define source preprocessing
 directive. If a value is specified, there can be no spaces
 on either side of the equal sign. If no value is specified,
 the default value is 1.

 Compare to the -U option.

 By default, macros are not expanded in Fortran source
 statements. Use the -F option to enable macro expansion in
 Fortran source statements.

 -f source_form
 Specifies whether the Fortran source file is written in
 fixed source form or free source form. For source_form,
 enter free or fixed.

 The default is fixed for source files that have a .f or .F
 suffix. The default is free for source files that have a
 .f90, .F90, .f95, .F95, .f03, .F03, .f08, .F08, .ftn, or
 .FTN suffix.

 If the file has a .F, .F90, .F95, .F03, .F08, or .FTN
 suffix, the source preprocessor is invoked.

 -F Macro expansion is now enabled by default and controlled by
 the -d|e F option. The -F option is obsolete and supported
 for compatibility with legacy make files.

 -g Provides debugging support identical to specifying the -G0
 option.

 Default: off.

 -G debug_lvl
 Controls the tradeoffs between ease of debugging and
 compiler optimizations. The compiler produces some level of
 internal debugger information (DWARF) at all times. This
 DWARF data provides function and source line information to
 debuggers for tracebacks and breakpoints, as well as type
 and location information about data variables.

 Note: The -g or -G options can be specified on a per-file
 basis, so that only part of an application pays the price

 for improved debugging.

 debug_lvl Support

 0 All optimizations disabled including floating
 point optimizations: full DWARF information is
 available for debugging, but at the cost of a
 slower and larger executable. Breakpoints can be
 set at each line. This level of debugging is
 supported when optimization is disabled; that is,
 when -O0, -O ipa0, -O scalar0,-O thread0, and
 -O vector0 are in effect.

 Implies -h fp0.

 1 Partial optimization: most DWARF and at least some
 optimizations make tracebacks and limited
 breakpoints available in the debugger. Some scalar
 optimizations and all loop nest restructuring is
 disabled, but the source code will be visible and
 most symbols will be available. This allows block-
 by-block debugging, with the exception of
 innermost loops. The executable will be faster
 than with -g or -G0.

 2 Full optimization: with partial DWARF and most
 optimizations, tracebacks and very limited
 breakpoints are available in the debugger. The
 source code will be visible and some symbols will
 be available. This level allows post-mortem
 debugging, but local information such as the value
 of a loop index variable is not necessarily
 reliable at this level because such information
 often is carried in registers in optimized code.
 The executable will be faster and smaller than
 with -G1.

 fast Compile code for use with Cray fast-track
 debugging. This option is useful only if used in
 conjunction with a debugger that supports fast-
 track debugging. For more information, see the
 lgdb(1) man page.

 -h arg The -h arg option enables you to access various compiler
 functions. Some of these options duplicate -O arg options;
 the -h options are provided as a convenience for programmers

 who mix Fortran and C/C++ code.

 [no]acc Enables or disables the compiler recognition of
 OpenACC accelerator directives.

 Default: acc

 [system|default]_alloc
 The -hsystem_alloc option causes the compiler to
 use the native malloc implementation provided by
 the OS. By default, the compiler uses a modified
 malloc implementation which offers better support
 for Cray XE memory needs. This is a link-time
 option.

 Default: default_alloc

 [no]add_paren
 The -hadd_paren option automatically adds
 parenthesis to select associative operations
 (+,-,*) to encourage left to right evaluation of
 floating point and complex expressions. Left to
 right evaluation is not required by the language
 standards, but some applications may expect it.

 Default: noadd_paren

 [no]align_arrays
 Controls padding of arrays in static data. Some
 statically allocated arrays are aligned and padded
 for better cache behavior. Common block data is
 not affected.

 Default: align_arrays

 [no]autoprefetch
 Controls automatic prefetch optimization. Does not
 affect loop_info [no]prefetch directive.

 Default: autoprefetch.

 [no]autothread
 The -h [no]autothread option enables or disables
 autothreading.

 Default: noautothread

 byteswapio
 Forces byte-swapping of all input and output files
 for direct and sequential unformatted I/O.

 cachen Specify the level of automatic cache management to
 be performed, where n is a value from 0 to 3 with
 0 being no cache management and 3 being the most
 aggressive. This is identical to the -O cachen
 option.

 Default: cache2

 [no]caf Enable the compiler to recognize coarray syntax.
 Coarrays are a Fortran 2008 feature that offer a
 method for performing data passing.

 Default: nocaf

 cpu=target_system
 Specify the target Cray system on which the
 absolute binary file is to be executed, where
 target_system can be either x86-64, opteron,
 barcelona, shanghai, istanbul, mc8, mc12, or
 interlagos.

 The x86-64 and opteron options produce identical
 output, for use on single- and dual-core systems.
 If you are creating executables for use on a
 system with quad-core processors (either AMD
 Opteron barcelona or shanghai processors), you
 must also have the associated module (either xtpe-
 barcelona or xtpe-shanghai) loaded when compiling
 and linking your code. Likewise, if you are
 creating executables for use on a system with AMD
 Opteron six-core processors (istanbul), eight-core
 processors (mc8), twelve-core processors (mc12),
 or 16-core processors (interlagos), you must have
 the xtpe-istanbul, xtpe-mc8, xtpe-mc12, or xtpe-
 interlagos module loaded when compiling and
 linking your code. If one of these modules is
 loaded, the default target_system changes to the
 corresponding cpu target.

 If target_system is set during compilation of any
 source file, it must be set to the same target
 during linking and loading.

 The target system may also be specified using the
 CRAY_PE_TARGET environment variable.

 Default: x86-64.

 display_opt
 Display the compiler optimization settings
 currently in force. This option is identical to
 the -eo option.

 [no]dwarf Controls whether DWARF debugging information is
 generated during compilation.

 Default: dwarf.

 dynamic Directs the compiler driver to link dynamic
 libraries at runtime. This option is used to
 create dynamically linked executable files and may
 not be used with the -h static or -h shared
 options. Note that the preferred invocation is to
 call the generic ftn command with the -dynamic
 option, rather than using this compiler specific
 option. See the ftn(1) man page.

 flex_mp=level
 Controls the aggressiveness of optimizations which
 may affect floating point and complex
 repeatability when application requirements
 require identical results when varying the number
 of ranks or threads.

 -hflex_mp=intolerant has the highest probability
 of repeatable results, but also has the highest
 performance penalty. -hflex_mp=conservative uses
 more aggressive optimization and yields higher
 performance than -hflex_mp=intolerant, but results
 may not be sufficiently repeatable for some
 applications. -hflex_mp=tolerant uses most
 aggressive optimization and yields highest
 performance, but results may not be sufficiently
 repeatable for some applications.

 fpn Controls the level of floating point
 optimizations, where n is a value between 0 and 3,
 with 0 giving the compiler minimum freedom to
 optimize floating point operations and 3 giving it
 maximum freedom. The higher the level, the less
 the floating point values conform to the IEEE
 standard.

 When -hfp[0,1] is specified, it also has the
 effect of setting -hfp_trap.

 Default: fp2.

 [no]fp_trap
 Controls whether the compiler generates code
 compatible with floating point traps being
 enabled.

 Default: fp_trap, if traps are enabled using the
 -K trap option, or if -Ofp[0,1] is in effect.
 Otherwise, the default is nofp_trap.

 [no]func_trace
 The -h func_trace option is for use only with
 CrayPat (Cray performance analysis tool). If this
 option is specified, the compiler inserts CrayPat
 entry points into each function in the compiled
 source file. The names of the entry points are
 __pat_tp_func_entry and __pat_tp_func_return.

 These are resolved by CrayPat when the program is
 instrumented using the pat_build command. When the
 instrumented program is executed and it encounters
 either of these entry points, CrayPat captures the
 address of the current function and its return
 address.

 Default: nofunc_trace

 keepfiles The -h keepfiles option prevents the removal of
 the object (.o) and temporary assembly (.s) files
 after an executable is created. Normally, the
 compiler automatically removes these files after
 linking them to create an executable. Since the
 original object files are required in order to
 instrument a program for performance analysis, if

 you plan to use CrayPat to conduct performance
 analysis experiments, you can use this option to
 preserve the object files.

 loop_trips=[tiny|small|medium|large|huge]
 Specifies runtime loop trip counts for all loops
 in a compiled source file. This information is
 used to better tune optimizations to the runtime
 characteristics of the application.

 mpin Enables or disables optimization around a selected
 subset of MPI library calls. mpi0 disables this
 option.

 Default: mpi1(on)

 [no]msgs Controls whether messages describing optimizations
 performed are written to stderr.

 Similar information in a more-readable format can
 be obtained by using the -rm option instead.

 This option is identical to the -O [no]msgs
 option.

 Default: nomsgs

 [no]negmsgs
 Controls whether messages explaining why
 optimizations such as vectorization or inlining
 did not occur are written to stderr.

 The -h negmsgs option enables the -h msgs option.
 The -rm option enables the -h negmsgs option.

 This option is identical to the -O [no]negmsgs
 option.

 Default: nonegmsgs

 network=nic
 Specify the target machine's interconnection
 attribute. The supported value is gemini.

 [no]omp Enable or disable compiler recognition of OpenMP
 directives. Using -h noomp is similar to the -h

 thread0 option, in that it disables OpenMP, but
 unlike -h thread0 it does not affect
 autothreading. The -h noomp option is identical to
 the -O [no]omp option.

 Default: omp

 [no]omp_acc
 Enables or disables the compiler recognition of
 OpenMP accelerator directives.

 Default: omp_acc

 [no]omp_trace
 Enable or disable the insertion of CrayPat OpenMP
 tracing calls.

 Default: noomp_trace.

 page_align_allocate
 The -h page_align_allocate option directs the
 compiler to force allocations of arrays larger
 than the memory page size to be aligned on a page
 boundary. This option affects only the ALLOCATE
 statements of the current source file; therefore
 it must be specified for each source file where
 this behavior is desired. Using this option can
 improve DIRECTIO performance.

 pic, PIC Generate position independent code (PIC), which
 allows a virtual address change from one process
 to another, as is necessary in the case of shared,
 dynamically linked objects. The virtual addresses
 of the instructions and data in PIC code are not
 known until dynamic link time.

 pl=program_library
 Create and use a persistent repository of compiler
 information specified by program_library. When
 used with -h wp, this option provides application-
 wide, cross-file, automatic inlining. See -h wp.

 The program_library repository is implemented as a
 directory and the information contained in program
 library is built up with each compiler invocation.
 Any compilation that does not have the -h pl

 option will not add information to this
 repository.

 Because of the persistence of program_library, it
 is the user's responsibility to manage it. For
 example, rm -r program_library might be added to
 the make clean target in an application makefile.
 Because program_library is a directory, use rm -r
 to remove it.

 If an application makefile works by creating files
 in multiple directories during a single build, the
 program_library should be an absolute path,
 otherwise multiple and incomplete program library
 repositories will be created. For example, avoid
 -hpl=./PL.1 and use -hpl=/fullpath/builddir/PL.1
 instead.

 profile_generate
 Enable instrumenting of source code for CrayPat
 profile-guided optimization. For more information,
 see the intro_craypat(1) and pat_build(1) man
 pages.

 [no]second_underscore
 Control the way in which external names are
 generated. By default, the compiler generates
 external names in lower case and adds one trailing
 underscore. This behavior matches the PGI Fortran
 compiler's external behavior. If this option is
 enabled, the compiler adds a second trailing
 underscore if the original external name has any
 underscores in it. This behavior matches the GNU
 compiler's external behavior.

 Default: nosecond_underscore.

 shared Creates a library which may be dynamically linked
 at runtime. Note that the preferred invocation is
 to call the generic ftn command with the -shared
 option, rather than using this compiler specific
 option. See the ftn(1) man page.

 static Directs the linker to use the static version of
 the libraries, not the dynamic version of the
 libraries, to create an executable file. Note that

 the preferred invocation is to call the generic
 ftn command with the -static option. See the
 ftn(1) man page.

 threadn Control the compilation and optimization of OpenMP
 directives, where n is a value from 0 to 3 with 0
 being off and 3 specifying the most aggressive
 optimization. This option is identical to the -O
 threadn option.

 Default: thread2.

 wp Enables the whole program mode. This option causes
 the compiler backend (IPA, optimizer,
 codegenerator) to be invoked at application link
 time, enabling whole program automatic
 inlining/cloning and future whole program
 interprocedural analysis (IPA) optimizations.
 Since the -hwp option provides automatic
 application-wide inlining, the -Oipafrom option is
 no longer needed for cross-file inlining. Requires
 that -h pl=program_library is also specified.

 The options -h pl=program_library and -hwp should
 be specified on all compiler invocations and on
 the compiler link invocation. Since -h wp delays
 the compiler optimization step until link time, -c
 compiles will take less time and the link step
 will take longer. Normally, this is just a time
 shift from one build phase to another with roughly
 the same overall compile time. In some cases
 increased inlining may cause an increase in
 overall compile time. Using -h wp allows the
 compiler backend to be invoked in parallel during
 a build. Setting the environment variable NPROC
 controls the number of concurrent compiler backend
 invocations and this parallelism may reduce
 overall compile time.

 zero Initializes all undefined local stack variables to
 0 (zero). If a user variable is of type character,
 it is initialized to NUL. The variables are
 initialized upon each execution of the procedure.
 This option is identical to the -e0 option.

 Default: disabled.

 -I incldir
 Specifies a directory to be searched for files named in
 INCLUDE lines and #include directives. You must specify an
 -I option for each directory you want searched. Directories
 can be specified in incldir as full pathnames or as
 pathnames relative to the working directory.

 If no -I is specified, only the working directory and system
 directories are searched.

 -J dir_name
 Specifies the directory to which the file.mod files are
 written when -e m is specified on the command line.

 The compiler automatically searches the dir_name directory
 for modules to satisfy USE statements. An error is issed if
 the -em option is not specified when the -J option is used.

 By default, the files are written to the current working
 directory.

 -K trap=opt[,opt] ...
 Enable traps for the specified exceptions. By default, no
 exceptions are trapped. Enabling traps using this option
 also has the effect of setting -h fp_trap.

 If the specified options contradict each other, the last
 option has priority. For example, -Ktrap=none,fp is
 equivalent to -Ktrap=fp.

 This option is processed only at link time and affects the
 entire program; it is not processed when compiling
 subprograms. Therefore, traps may be set using this command
 line option at the beginning of execution of the main
 program only. The program may subsequently change these
 settings by calling intrinsic or library procedures. Use of
 this option may require the specification of -hfp_trap when
 compiling other files of the application.

 opt Exceptions

 denorm Trap on denormalized operands.

 divz Trap on divide-by-zero.

 fp Trap on divz, inv, or ovf exceptions.

 inexact Trap on inexact result (i.e. rounded result).
 Enabling traps for inexact results is not
 recommended.

 inv Trap on invalid operation.

 none Disables all traps (default).

 ovf Trap on overflow (i.e. the result of an operation
 is too large to be represented).

 unf Trap on underflow (i.e. the result of an operation
 is too small to be represented).

 -l libname
 Directs the compiler driver to search for the specified
 object library file when linking an executable. To request
 more than one library file, specify multiple -l options.

 When statically linking, the compiler driver searches for
 libraries by prepending ldir/lib on the front of libname and
 appending .a on the end of it, for each ldir that has been
 specified by using the -L option. It uses the first file it
 finds.

 When dynamically linking, the library search process is
 similar to the static case, with a few differences. The
 compiler driver searches for libraries by prepending
 ldir/lib on the front of libname and appending .so on the
 end of it, for each ldir that has been specified by using
 the -L option. If a matching .so is not found, the compiler
 driver replaces .so with .a and repeats the process from the
 beginning. It uses the first file it finds.

 There is no search order dependency for libraries.

 If you specify personal libraries by using the -l command
 line option, those libraries are added before the default
 CCE library list.

 For example, when the following command line is issued, the
 linker looks for a library named libmylib.a (following the
 naming convention) and adds it to the top of the list of
 default libraries.

 % ftn -l mylib target.f

 -L ldir Changes the -l option search algorithm to look for library
 files in directory ldir. To request more than one library
 directory, specify multiple -L options.

 Note: Multiple -L options are treated cumulatively as if
 all ldir arguments appeared on one -L option preceding all
 -l options. Therefore, do not attempt to link functions of
 the same name from different libraries through the use of
 alternating -L and -l options.

 The compiler driver searches for library files in directory
 ldir before searching the default directories: /opt/ctl/libs
 and /lib.

 For example, when statically linking, if -L ../mylib, -L
 /loclib, and -l m are specified, the compiler driver
 searches for the following files and uses the first one
 found:

 ../mylibs/libm.a
 /loclib/libm.a
 /opt/ctl/libs/libm.a
 /lib/libm.a

 -m msg_lvl
 Specifies the minimum compiler message levels to enable. The
 following list shows the integers to specify in order to
 generate each type of message and which messages are
 generated by default:

 msg_lvl Message Types Enabled

 0 Error, Warning, Caution, Note, and Comment

 1 Error, Warning, Caution, and Note

 2 Error, Warning, and Caution

 3 Error and Warning (default)

 4 Error

 You can use the explain(1) command to view a message
 explanation.

 -M msgs The -M msgs option suppresses messages at the Warning,
 Caution, Note, and Comment levels and can change the default
 message severity to an Error or a Warning level. You cannot
 suppress or alter the severity of Error-level messages with
 this option.

 To suppress messages, specify one or more integer numbers
 that correspond to the Cray Fortran Compiler messages you
 want to suppress. To specify more than one message number,
 specify a comma (but no spaces) between the message numbers.
 For example, -M 110,300 suppresses messages 110 and 300.

 To change a message's severity to an Error level or a
 Warning level, specify an E (for Error) or a W (for Warning)
 and then the number of the message. For example, consider
 the following option:

 -M 300,E600,W400

 This specification results in the following:

 ¬∑ Message 300 is disabled and is not issued, provided that
 it is not an Error-level message by default. Error-level
 messages cannot be suppressed and cannot have their
 severity downgraded.

 ¬∑ Message 600 is issued as an Error-level message,
 regardless of its default severity.

 ¬∑ Message 400 is issued as a Warning-level message,
 provided that is it not an Error-level message by
 default.

 -N col Specifies the line width, in columns, for fixed- or free-
 format source lines. For fixed form sources, use one of the
 following values for col to specify the maximum number of
 columns per line:

 ¬∑ 72

 ¬∑ 80

 ¬∑ 132

 ¬∑ 255

 For free form sources, col can be set to 132 or 255.

 By default, lines are 72 characters wide for fixed-format
 sources and 255 characters wide for free-form sources.

 -O opt[,opt] ...
 Specifies optimization features. The opt values 0, 1, 2, and
 3 enable you to specify increasing general levels of
 optimization. The other opt values enable you to select
 specific optimization features.

 The -O 1, -O 2, and -O 3 specifications do not directly
 correspond to the numeric optimization levels for scalar
 optimization and vectorization. For example, specifying -O 3
 does not necessarily enable scalar3 and vector3. Cray
 reserves the right to alter the specific optimizations
 performed at these levels from release to release. You can
 use the -e o option or the ftnlx command to display the
 optimization options used during compilation.

 The valid opt values are:

 opt Optimization Provided

 -O 0 Disables all optimizations including floating
 point optimizations. Implies -h fp0.

 -O 1, -O 2, -O 3
 Default: 2.

 [no]aggress
 Cause the compiler to treat a program unit (for
 example, a subroutine or function) as a single
 optimization region. Doing so can improve the
 optimization of large program units but also
 increases compile time and size.

 Default: noaggress.

 [no]autoprefetch
 Controls automatic prefetch optimization. Does not
 affect loop_info [no]prefetch directive.

 Default: autoprefetch.

 cachen Specify the level of automatic cache management,
 where n can be one of the following values:

 0 Specifies no automatic cache management;
 all memory references are allocated to
 cache. Both automatic cache blocking and
 manual cache blocking (by use of the
 BLOCKABLE directive) are shut off.
 Characteristics include low compile
 time. This option is compatible with all
 optimization levels.

 1 Specifies conservative automatic cache
 management. Characteristics include
 moderate compile time. Symbols are
 placed in the cache when the possibility
 of cache reuse exists and the predicted
 cache footprint of the symbol in
 isolation is small enough to experience
 reuse.

 2 Specifies moderately aggressive
 automatic cache management.
 Characteristics include moderate compile
 time. Symbols are placed in the cache
 when the possibility of cache reuse
 exists and the predicted state of the
 cache model is such that the symbol will
 be reused.

 3 Specifies aggressive automatic cache
 management. Characteristics include
 potentially high compile time. Symbols
 are placed in the cache when the
 possibility of cache reuse exists and
 the allocation of the symbol to the
 cache is predicted to increase the
 number of cache hits.

 fpn Controls the level of floating point
 optimizations, where n is a value between 0 and 3,
 with 0 giving the compiler minimum freedom to
 optimize floating point operations and 3 giving it
 maximum freedom. The higher the level, the less
 the floating point values conform to the IEEE
 standard.

 When -hfp[0,1] is specified, it also has the
 effect of setting -hfp_trap.

 Default: fp2.

 fusionn Control loop fusion globally and changes the
 assertiveness of the FUSION directive.

 Loop fusion can improve the performance of loops.
 although in some rare cases it may degrade overall
 performance.

 The n argument enables you to turn loop fusion on
 or off and determine where fusion should occur. It
 also affects the assertiveness of the FUSION
 directive. n can be one of the following values:

 0 No fusion (ignore all FUSION directives
 and do not attempt to fuse other loops)

 1 Attempt to fuse loops that are marked by
 the FUSION directive.

 2 Attempt to fuse all loops (includes
 array syntax implied loops), except
 those marked with the NOFUSION
 directive.

 Default: fusion2.

 inlinelib (Deferred implementation) Attempt inlining of
 those Cray scientific library routines that are
 available for inlining. For a report of what was
 inlined or not, see the -O msg,negmsgs option.

 ipan Control level of interprocedural analysis (IPA)
 which implies the control over the level of

 automatic inlining and cloning.

 Inlining is the process of replacing a user
 procedure call with the procedure definition
 itself. This saves subprogram call overhead and
 may allow better optimization of the inlined code.
 If all calls within a loop are inlined, the loop
 becomes a candidate for parallelization.

 Cloning is a situation in which a procedure is
 duplicated with modifications such that it will
 run more efficiently. For example, the compiler
 will clone a procedure for a specific call site
 when there are constant actual arguments present
 in that call site. When the clone is made, the
 dummy arguments are replaced with the constant
 actual arguments, and the original call to the
 procedure is replaced with a call to the duplicate
 copy.

 When -O ipan is used alone, the candidates for
 expansion are all those functions that are present
 in the input file to the compile step. If -O ipan
 is used in conjunction with -O ipafrom=source, the
 candidates for expansion are those functions
 present in source.

 The valid values for n are:

 0 All inlining and cloning is disabled.
 All inlining and cloning compiler
 directives are ignored.

 1 Directive inlining. Inlining is
 attempted for call sites and routines
 that are under the control of an
 inlining compiler directive. Cloning is
 not enabled and cloning directives are
 ignored.

 2 Call nest inlining. Inline a call nest
 to an arbitrary depth as long as the
 nest does not exceed some compiler-
 determined threshold. A call nest can be
 a leaf routine. The expansion of the
 call nest must yield straight-line code

 (code containing no external calls) for
 any expansion to occur. The call site is
 said to "flatten" when there are no
 calls present in the expanded code. The
 call site must reside within the body of
 a loop for expansion to be attempted.
 Cloning is not enabled and cloning
 directives are ignored.

 3 Constant actual argument inlining and
 tiny routine inlining. Default level for
 inlining. This includes levels 1 and 2,
 plus any call site that contains a
 constant actual argument. Additionally,
 any call nest (regardless of location)
 that is below some small compiler-
 determined threshold will be inlined
 provided that call nest completely
 flattens. Cloning is not enabled and
 cloning directives are ignored.

 4 Cloning. This includes levels 1, 2, and
 3, plus routine cloning is attempted if
 inlining fails at a given call site.

 5 Aggressive interprocedural analysis
 (IPA). Includes levels 1, 2, 3, and 4.

 ipafrom=source[:source] ...
 Explicitly indicate the procedures to consider for
 inline expansion.

 The source arguments identify each file or
 directory that contains the routines to consider
 for inlining. Whenever a call is encountered in
 the input program that matches a routine in
 source, inlining is attempted for that call site.

 Note: Blank spaces are not allowed on either side
 of the equal sign.

 All inlining directives are recognized with
 explicit inlining.

 Note that the routines in source are not actually
 linked with the final program. They are simply

 templates for the inliner. To have a routine
 contained in source linked with the program, you
 must include it in an input file to the
 compilation.

 The following source arguments are supported.

 Fortran source files
 The routines in Fortran source files are
 candidates for inline expansion and must
 contain error-free code. Source files
 that are acceptable for inlining are
 files that have one of the following
 extensions

 ¬∑ .f

 ¬∑ .F

 ¬∑ .f90

 ¬∑ .F90

 ¬∑ .f95

 ¬∑ .F95

 ¬∑ .f03

 ¬∑ .F03

 ¬∑ .f08

 ¬∑ .F08

 ¬∑ .ftn

 ¬∑ .FTN

 Module files
 When compiling with -em and -Omodinline
 in effect, the precompiled module
 information is written to modulename*
 .mod. The compiler writes a modulename*
 .mod file for each module; modulename is
 created by taking the name of the module

 and, if necessary, converting it to
 uppercase.

 Directories
 A directory containing any of the
 Fortran source of Module files described
 above.

 [no]modinline
 Prepare module procedures so they can be inlined
 by directing the compiler to create templates for
 module procedures encountered in a module. These
 templates are attached to file.o or modulename*
 .mod. The files that contain these inlinable
 templates can be saved and used later to inline
 call sites within a program being compiled.

 When -e m is in effect, module information is
 stored in modname.mod. The compiler writes a
 modulename.mod file for each module; modulename is
 created by taking the name of the module and, if
 necessary, converting it to uppercase.

 The process of inlining module procedures requires
 only that file.o or modulename.mod be available
 during compilation through the typical module
 processing mechanism. The USE statement makes the
 templates available to the inliner. You do not
 need to specify the file.o or modulename.mod with
 the -O ipafrom option.

 When -O modinline is specified, the MODINLINE and
 NOMODINLINE directives are recognized. Using the
 -O modinline option increases the size of file.o.

 To ensure that file.o is not removed, specify this
 option in conjunction with the -c option.

 Default: modinline

 [no]msgs Cause the compiler to write optimization messages
 to stderr.

 Similar information in a more-readable format can
 be obtained by using the -rm option instead.
 Specifying the -rm option enables -O msgs.

 Default: nomsgs

 [no]negmsgs
 Cause the compiler to generate messages to stderr
 that indicate why optimizations such as
 vectorization or inlining did not occur in a given
 instance.

 The -O negmsgs option enables the -O msgs option.
 The -rm option enables the -O negmsgs option.

 Default: nonegmsgs

 nointerchange
 Inhibit the compiler's attempts to interchange
 loops. Interchanging loops by having the compiler
 replace an inner loop with an outer loop can
 increase performance. The compiler performs this
 optimization by default.

 Specifying the -O nointerchange option is
 equivalent to specifying a NOINTERCHANGE directive
 prior to every loop. To disable loop interchange
 on individual loops, use the NOINTERCHANGE
 directive.

 [no]omp Enable or disable compiler recognition of OpenMP
 directives. Using -O noomp is similar to the -O
 thread0 option, in that it disables OpenMP, but
 unlike -O thread0 it does not affect
 autothreading. The -O noomp option is identical to
 the -h [no]omp option.

 Default: omp

 [no]overindex
 Assert that there are no array subscripts which
 index a dimension of an array that are outside the
 declared bounds of that dimension. Short loop code
 generation occurs when the extent does not exceed
 the maximum vector length of the machine.
 Specifying -O overindex declares that the program
 contains code that makes array references with
 subscripts that exceed the defined extents. This
 prevents the compiler from performing the short

 loop optimizations.

 Default: nooverindex

 [no]pattern
 Enables pattern matching for library substitution.
 The pattern matching feature searches your code
 for specific code patterns and replaces them with
 calls to highly optimized routines.

 The -O pattern option is enabled only for
 optimization levels -O 2, -O vector2 or higher;
 there is no way to force pattern matching for
 lower levels.

 Specifying -O nopattern disables pattern matching
 and causes the compiler to ignore the PATTERN and
 NOPATTERN directives.

 Default: pattern

 scalarn Specifies the level of scalar optimization, where
 n can be one of the following levels:

 0 Disables scalar optimization.

 1 Specifies conservative scalar
 optimization.

 2 Specifies moderate scalar optimization.
 This is the default.

 3 Specifies aggressive scalar
 optimization.

 shortcircuitn
 Specifies various levels of short circuit
 evaluation, which is an optimization in which the
 compiler analyzes all or part of a logical
 expression based on the results of a preliminary
 analysis. When enabled, the compiler attempts
 short circuit evaluation of logical expressions
 that are used in IF statement scalar logical
 expressions. This evaluation is performed on the
 .AND. and .OR. operator. n can be one of the
 following levels:

 0 Disables short circuiting of IF and
 ELSEIF statement logical conditions.

 1 Specifies short circuiting of IF and
 ELSEIF logical conditions only when a
 PRESENT, ALLOCATED, or ASSOCIATED
 intrinsic procedure is in the condition.

 2 Specifies short circuiting of IF and
 ELSEIF logical conditions, and it is
 done left to right. This is the default
 for x86-64.

 3 Specifies short circuiting of IF and
 ELSEIF logical conditions. It is an
 attempt to avoid making function calls.
 If either the left or right operand to
 .AND. and .OR. operators contain
 function calls, short circuit evaluation
 is performed. This is the default for
 target cpus other than x86-64.

 threadn Control the compilation and optimization of OpenMP
 directives, where n is a value from 0 to 3 with 0
 being off and 3 specifying the most aggressive
 optimization.

 The valid values for n are:

 0 No autothreading or OpenMP threading.
 The -O thread0 option is similar to -O
 noomp, but -O noomp disables OpenMP only
 and does not affect autothreading.

 1 Specifies strict compliance with the
 OpenMP standard for directive
 compilation. Strict compliance is
 defined as no extra optimizations in or
 around OpenMP constructs. In other
 words, the compiler performs only the
 requested optimizations.

 2 OpenMP parallel regions are subjected to
 some optimizations; that is, some
 parallel region expansion. Parallel

 region expansion is an optimization that
 merges two adjacent parallel regions in
 a compilation unit into a single
 parallel region.

 3 Full optimization: loop restructuring,
 including modifying iteration space for
 static schedules (breaking standard
 compliance). Reduction results may not
 be repeatable.

 Default: -O thread2

 unrolln The -O unrolln option globally controls loop
 unrolling and changes the assertiveness of the
 UNROLL directive. By default, the compiler
 attempts to unroll all loops, unless the NOUNROLL
 directive is specified for a loop. Generally,
 unrolling loops increases single processor
 performance at the cost of increased compile time
 and code size.

 The n argument enables you to turn loop unrolling
 on or off and determine where unrolling should
 occur. It also affects the assertiveness of the
 UNROLL directive. Use one of these values for n:

 0 No unrolling (ignore all UNROLL
 directives and do not attempt to unroll
 other loops)

 1 Attempt to unroll loops that are marked
 by the UNROLL directive.

 2 Attempt to unroll all loops (includes
 array syntax implied loops), except
 those marked with the NOUNROLL
 directive. This is the default.

 Default: unroll2.

 vectorn Specifies the level of automatic vectorizing to be
 performed. Vectorization results in dramatic
 performance improvements with a small increase in
 object code size. Vectorization directives are
 unaffected by this option.

 Default: 2.

 0 Minimal automatic vectorization.
 Characteristics include low compile time
 and small compile size. This option is
 compatible with all scalar optimization
 levels. The compiler will still
 vectorize array syntax in order to allow
 full source level debugging with
 reasonable performance. When this option
 is specified in conjunction with -hfp0
 or -hfp1, then array syntax containing
 associative floating point or complex
 operations will not be vectorized.

 1 Conservative vectorization. The
 -h vector1 option is compatible with
 -h scalar1, -h scalar2, and -h scalar3.

 2 Moderate vectorization. Loop nests are
 restructured. The -h vector2 option is
 compatible with -h scalar2 or
 -h scalar3.

 3 Aggressive vectorization.

 [no]zeroinc
 Cause the compiler to assume that a constant
 increment variable (CIV) can be incremented by
 zero. A CIV is a variable that is incremented only
 by a loop invariant value. For example, in a loop
 with variable J, the statement J = J + K, where K
 can be equal to zero, J is a CIV. -O zeroinc can
 cause less strength reduction to occur in loops
 that have variable increments.

 Default: nozeroinc

 -o out_file
 Override the default executable file name, a.out, with the
 name specified in the out_file argument.

 If both the -o out_file and -c options are specified, the
 link step is disabled and the binary file is written to
 out_file.

 -p module_site[, module_site]
 Specify where to look for Fortran modules to satisfy USE
 statements. The module_site argument specifies the name of a
 file or directory to search for modules. The module_site
 specified can be a .mod file, .o (object) file, .a (archive)
 file, or a directory.

 By default, module files are written to the current working
 directory. Alternatively, you can use the -J dir_name option
 during compilation to specify an alternate output directory
 for .mod files only. The compiler will search for modules
 stored in the directories you specified using the -J
 dir_name option for the current compilation automatically;
 you do not need to use the -p option explicitly to make the
 compiler do this.

 The search order for satisfying modules references in USE
 statements is as follows:

 1. The current working directory (or -J dir_name directory,
 if specified).

 2. Any directories or files specified with the -p option.

 3. Any directories specified with the -I option.

 4. Any directories or files specified with the
 FTN_MODULE_PATH environment variable.

 When searching within a directory, the compiler first
 searches the .mod files, then the .o files, then the .a
 files, and then the directories, in the order specified.

 -Q path Specifies the directory to contain all saved nontemporary
 files from this compilation (for example, all .o and .mod
 files). Specific file types (such as .o files) are saved to
 a different directory if the -b, -J, -o, or -S options are
 used.

 By default, this option is disabled and the compiler puts
 all nontemporary files in the current working directory.

 -r list_opt
 Produces a listing file. The list_opt arguments are as
 follows:

 Note: Arguments a, c, l, m, o, s, and x invoke the ftnlx(1)
 command.

 a Includes all reports in the listing (including
 source, cross references, options, lint,
 loopmarks, common block, and options used during
 compilation).

 c Listing includes a COMMON block report (lists all
 common blocks and members of each block).

 d Decompiles (translates) the intermediate
 representation of the compiler into listings that
 resemble the format of the source code. You can
 use these files to examine the restructuring and
 optimization changes made by the compiler, which
 can lead to insights about changes you can make to
 your Fortran source to improve its performance.

 The compiler produces two decompilation listing
 files, with these extensions, per source file
 specified on the command line: .opt and .cg.

 e Expands included files in the source listing. This
 option is off by default.

 l Lists source code and includes lint style
 checking. The listing includes the COMMON block
 report (see the -r c option for more information
 about the COMMON block report).

 m Produces a source listing with loopmark
 information. To provide a more complete report,
 this option automatically enables the -O negmsg
 option to show why loops were not optimized. If
 you do not require this information, use the -O
 nonegmsg option on the same command line.

 o Show all options used by the compiler during
 compilation.

 s Lists source code.

 T Retains file.T after processing rather than
 deleting it.

 x Produces a cross-reference listing.

 -R runchk Specifies any of a group of runtime checks for your program.
 To specify more than one type of checking, specify
 consecutive runchk arguments, as follows: -R bs.

 runchk can be one or more of the following suboptions:

 b Enables checking of array bounds. Bounds checking
 is not performed on arrays dimensioned as (1).
 Enables -Ooverindex.

 c Enables conformance checking of array operands in
 array expressions.

 d Enables a run time check for the !dir$ collapse
 directive and checks the validity of the
 loop_info, shortloop, and shortloop128 count
 information.

 p Generates run time code to check the association
 or allocation status of referenced POINTER
 variables, ALLOCATABLE arrays, or assumed-shape
 arrays.

 s Enables checking of character substring bounds.

 By default, no runtime checks are performed.

 rpath ldir
 The -rpath ldir option changes the run time library search
 algorithm to look for files in directory ldir. To request
 more than one library directory, specify multiple -rpath
 options. Note that a library may be found at link time with
 an -L option, but may not be found at run time if a
 corresponding -rpath option was not supplied on the link
 line. Also note that the compiler driver does not pass the
 -rpath option to the linker. You must explicitly specify -Wl
 when using this option.

 At link time, all ldir arguments are added to the
 executable. The dynamic linker will search these paths first
 for shared dynamic libraries at run time, with one
 exception. The Linux environment variable LD_LIBRARY_PATH
 precedes all other search paths for shared dynamically

 linked libraries. The use of LD_LIBRARY_PATH is discouraged.

 Caution:

 Caution should be used when setting LD_LIBRARY_PATH.
 Doing so will change the shared dynamically linked
 library search paths for all executable files in your
 environment.

 -s size The -s size option allows you to modify the sizes of
 variables, literal constants, and intrinsic function results
 declared as type REAL, INTEGER, LOGICAL, COMPLEX, DOUBLE
 COMPLEX, or DOUBLE PRECISION. Use one of these for size:

 size Action

 byte_pointer
 Applies a byte scaling factor to integers used in
 pointer arithmetic involving Cray pointers. That
 is, Cray pointers are moved on byte instead of
 word boundaries.

 default32 Adjusts the data size of default types as follows:

 ¬∑ 32 bits: REAL, INTEGER, LOGICAL

 ¬∑ 64 bits: COMPLEX, DOUBLE PRECISION

 ¬∑ 128 bits: DOUBLE COMPLEX

 Note: The data sizes of integers and logicals
 that use explicit kind and star values are not
 affected by this option. However, they are
 affected by the -e h option.

 default64 Adjust the data size of default types as follows:

 ¬∑ 64 bits: REAL, INTEGER, LOGICAL

 ¬∑ 64 bits: DOUBLE PRECISION (implied -dp)

 ¬∑ 128 bits: COMPLEX

 ¬∑ 128 bits: DOUBLE COMPLEX (implied -dp)

 If you used the -s default64 at compile time, you
 must also specify this option when invoking the
 ftn command.

 Note: The data sizes of integers and logicals
 that use explicit kind and star values are not
 affected by this option. However, they are
 affected by the -eh option.

 integer32 Adjusts the default data size of default integers
 and logicals to 32 bits.

 integer64 Adjusts the default data size of default integers
 and logicals to 64 bits.

 real32 Adjusts the default data size of default real
 types as follows:

 ¬∑ 32 bits: REAL

 ¬∑ 64 bits: COMPLEX and DOUBLE PRECISION

 ¬∑ 128 bits: DOUBLE COMPLEX

 real64 Adjusts the default data size of default real
 types as follows:

 ¬∑ 64 bits: REAL

 ¬∑ 64 bits: DOUBLE PRECISION (implied -dp)

 ¬∑ 128 bits: COMPLEX

 ¬∑ 128 bits: DOUBLE PRECISION (implied -dp)

 word_pointer
 Applies a word scaling factor to integers used in
 pointer arithmetic involving Cray pointers. That
 is, Cray pointers are moved on word instead of
 byte boundaries.

 The default data size options (for example, -s default64)
 option does not affect the size of data that explicitly

 declare the size of the data (for example, REAL(KIND=4) R.

 Note: REAL(KIND=16) and COMPLEX(KIND=16) are not supported.

 -S asm_file
 Specifies the assembly language output file name. This
 option overrides the -e S and -b bin_obj_file options.

 By default, this option is off.

 -T Disables the compiler but displays all options currently in
 effect.

 By default, this option is off.

 -U identifier[,identifier] ...
 The -U identifier [,identifier] ... option undefines
 variables used for source preprocessing. This option removes
 the initial definition of a predefined macro or sets a user
 predefined macro to an undefined state.

 The -D identifier [=value] option defines variables used for
 source preprocessing. If both -D and -U are used for the
 same identifier, in any order, the identifier is undefined.

 This option is ignored unless one of the following
 conditions is true:

 ¬∑ The Fortran input source file is specified as either
 file.F, file.F90, file.F95, file.F03, file.F08, file.FTN.

 ¬∑ The -e P or -e Z options have been specified.

 -v Prints information about each compilation phase to the
 standard error file (stderr). The information contains what
 the compiler, lister, and linker is doing and what it is
 calling.

 By default, this option is off.

 -V Directs each compilation phase to send a message containing
 version information to the standard error file (stderr).
 Unlike all other command line options, you can specify this
 option without specifying an input file name; that is,

 specifying ftn -V is valid.

 By default, this option is off.

 -Wa,"assembler_opt"
 The -Wa,"assembler_opt" option passes assembler_opt directly
 to the assembler. For example, -Wa,"-h" passes the -h option
 directly the as command, directing it to enable all pseudos,
 regardless of location field name. This option is meaningful
 to the system only when file.s is specified as an input file
 on the command line. For more information about assembler
 options, see the as(1) man page.

 -Wr,"lister_opt"
 The -Wr,"lister_opt" option passes lister_opt directly to
 the ftnlx command. For example, specifying -Wr,"-o cfile.o"
 passes the argument cfile.o directly to the ftnlx command's
 -o option; this directs ftnlx to override the default output
 listing and put the output file in cfile.o. If you specify
 the -Wr,"lister_opt" option, you must specify the -r
 list_opt option. For more information about options, see the
 ftnlx man page.

 -x dirlist
 Disables specified directives or specified classes of
 directives. If specifying a multiword directive, either
 enclose the directive name in quotation marks or remove the
 spaces between the words in the directive's name. dirlist
 can be one of the following options:

 acc All OpenACC API directives.

 all All compiler and OpenMP Fortran API directives.

 dir All compiler directives.

 directive One or more compiler directives. If specifying
 more than one, separate them with commas, as
 follows: -x INLINEALWAYS,"NO SIDE EFFECTS",BOUNDS.

 omp All OpenMP Fortran API directives, except
 accelerator directives.

 conditional_omp
 All C$ and !$ conditional compilation lines.

 By default, no directives or specified classes of directives
 are disabled.

 -X npes Specify the number of processing elements (PEs) that will be
 specified at job launch. The value for npes can range from 1
 through 2**31 - 1 inclusive on Cray XE systems.

 If -X is specified, the user must invoke aprun -n npes using
 the same value for npes. Otherwise, a run time error
 results.

 By default, the compiler does not specify the number of
 processors.

 -Yphase,dirname
 Specifies a new directory (dirname) from which the
 designated phase should be executed. phase can be one or
 more of the following values:

 Table 1. -Yphase Definitions
 --
 phase System Phase Command
 --
 0 Compiler ftn
 a Assembler as
 --

 -- Signifies the end of options. After this symbol, specify the
 files to be processed.

 sourcefile [sourcefile ...]
 Fortran source files to be processed, where sourcefile is
 one or more of the following:

 ¬∑ file.f

 ¬∑ file.F

 ¬∑ file.f90

 ¬∑ file.F90

 ¬∑ file.f95

 ¬∑ file.F95

 ¬∑ file.f03

 ¬∑ file.F03

 ¬∑ file.f08

 ¬∑ file.F08

 ¬∑ file.ftn

 ¬∑ file.FTN

 Files ending in .o and .s are also accepted. By default,
 several files are created during processing. The Cray
 Fortran Compiler adds a suffix to the file portion of the
 file name and places the files it creates in your working
 directory.

ENVIRONMENT VARIABLES
 The Cray Fortran Compiler recognizes these compile-time environment
 variables (for OpenMP environment variables, see Cray Fortran
 Reference Manual):

 CRAY_FTN_OPTIONS
 Specifies additional options to attach to the command line.

 CRAY_PE_TARGET
 Specifies the target_system for compilation. The command
 line option -h cpu=target_system takes precedence over the
 CRAY_PE_TARGET setting. The currently acceptable values for
 CRAY_PE_TARGET are x86-64, opteron, barcelona, shanghai,
 istanbul, mc8, mc12, or interlagos.

 The x86-64 and opteron options produce identical output, for
 use on single- and dual-core systems. If you are creating
 executables for use on a barcelona or shanghai (quad-core),
 istanbul (six-core), mc8 (8-core), mc12 (12-core), or
 interlagos (16-core) system, you must also have the
 associated module, xtpe-barcelona, xtpe-shanghai, xtpe-
 istanbul, xtpe-mc8, xtpe-mc12, or xtpe-interlagos loaded
 when compiling and linking your code. If one of these

 modules is loaded, the default target_system changes to the
 corresponding cpu target.

 If the target_system is set during compilation of any source
 file, it must also be set to that same target during linking
 and loading.

 FORMAT_TYPE_CHECKING
 Specifies various levels of conformance between the data
 type of each I/O list item and the formatted data edit
 descriptor.

 When set to RELAXED, the run-time I/O library enforces
 limited conformance between the data type of each I/O list
 item and the formatted data edit descriptor.

 When set to STRICT77, the run-time I/O library enforces
 strict FORTRAN 77 conformance between the data type of each
 I/O list item and the formatted data edit descriptor.

 When set to STRICT90 or STRICT95, the run-time I/O library
 enforces strict Fortran 90/95 conformance between the data
 type of each I/O list item and the formatted data edit
 descriptor.

 FORTRAN_MODULE_PATH
 As with the ftn -p module_site command line option, this
 environment variable enables you to specify the files or
 directory to search for the modules to use. The files can be
 archive files, build files (bld files), or binary files.

 The compiler appends the paths specified by the
 FORTRAN_MODULE_PATH environment variable to path specified
 by the -p module_site command line option.

 Since the FORTRAN_MODULE_PATH environment variable can
 specify multiple files and directories, a colon separates
 each path as shown in the following example:

 % set FORTRAN_MODULE_PATH='path1 : path2 : path3'

 LISTIO_PRECISION
 The LISTIO_PRECISION environment variable controls the
 number of digits of precision printed by list-directed
 output. The LISTIO_PRECISION environment variable can be set

 to FULL or PRECISION.

 ¬∑ FULL prints full precision (default).

 ¬∑ PRECISION prints x or x + 1 decimal digits, where x is
 value of the PRECISION intrinsic function for a given
 real value. This is a smaller number of digits, which
 usually ensures that the last decimal digit is accurate
 to within 1 unit. This number of digits is usually
 insufficient to assure that subsequent input will restore
 a bit-identical floating point value.

 NLSPATH Specifies the message system library catalog path. This
 environment variable affects compiler interactions with the
 message system. For more information on this environment
 variable, see the catopen(3c) man page.

 NPROC Specifies the maximum number of processes to be run. Setting
 NPROC to a number other than 1 can speed up a compilation if
 machine resources permit.

 The effect of NPROC is seen at compilation time, not at
 execution time. NPROC requests a number of compilations to
 be done in parallel. It affects all the compilers and also
 make.

 For example, assume that NPROC is set as follows:

 setenv NPROC 2

 The following command is entered:

 ftn -o t main.f sub.f

 In this example, the compilations from .f files to .o files
 for main.f and sub.f happen in parallel, and when both are
 done, the load step is performed. If NPROC is unset, or set
 to 1, main.f is compiled to main.o; sub.f is compiled to

 sub.o, and then the link step is performed.

 You can set NPROC to any value, but large values can
 overload the system. For debugging purposes, NPROC should be
 set to 1. By default, NPROC is 1.

 TMPDIR Specifies the directory containing the temporary files. The
 location of the directory is defined by your administrator
 and cannot be changed.

 ZERO_WIDTH_PRECISION
 The ZERO_WIDTH_PRECISION environment variable controls the
 field width when field width w of Fw.d is zero on output.
 The ZERO_WIDTH_PRECISION environment variable can be set to
 PRECISION or HALF.

 ¬∑ PRECISION specifies that full precision will be written.
 This is the default.

 ¬∑ HALF specifies that half of the full precision will be
 written.

 Cray Fortran Compiler recognizes these run time environment variables
 (for other run time environment variables, see Cray Fortran Reference
 Manual):

 CRAY_MALLOPT_OFF
 If set, then the system default mallopt parameters are used,
 instead of the compiler default parameters. For most
 programs, run time performance is improved by using the
 compiler defaults, but more memory may be used.

 MALLOC_MMAP_MAX_
 Specifies the maximum number of memory chunks to allocate
 with mmap. The compiler default value is 0. For most
 programs, run time performance is improved by using the
 compiler default, but more memory may be used.

 MALLOC_TRIM_THRESHOLD_
 Specifies the minimum size of the unused memory region at
 the top of the heap before the region is returned to the
 operating system. The compiler default value is 536870912
 bytes. For most programs, run time performance is improved
 by using the compiler default, but more memory may be used.

 NO_STOP_MESSAGE

 If set, and if the STOP [stop_code] statement does not
 specify the optional stop_code, then STOP messages are not
 produced when this statement is executed.

FILES
 Files containing Fortran source code have names with one of the
 following extensions: .f, .F, .f90, .F90, .f95, .F95, .f03, .F03,
 .f08, .F08, .ftn, or .FTN. By default, several files are created
 during processing. The Cray Fortran Compiler adds a suffix to the file
 portion of the file name and places the files it creates into your
 working directory.

 The loader produces an executable file (by default a.out). See the
 -o out_file option for information about specifying a different file
 name for the executable. If only one source file is specified on the
 command line, the .o file is created and deleted. To retain the .o
 file, use the -c option.

 The following files are accepted or produced by the compiler:

 a.out Default name of the executable output file.

 file.a Library file to be searched for external references.

 file.f
 file.F Input Fortran source file in fixed source form. If file ends
 in .F, the source preprocessor is invoked.

 file.f90
 file.F90
 file.f95
 file.F95
 file.f03
 file.F03
 file.f08
 file.F08
 file.ftn
 file.FTN Input Fortran source file in free source form. If the file
 extension is .F90, .F95, .F03, .F08, or .FTN, the source
 preprocessor is invoked.

 file.i File containing output from the source preprocessor.

 file.lst Listing file.

 file.o Relocatable object file.

 file.s Assembly language file.

 modulename.mod
 If the -em option is specified, the compiler writes a
 modulename.mod file for each module; modulename is created
 by taking the name of the module and, if necessary,
 converting it to uppercase. This file contains module
 information, including any contained procedures.

SEE ALSO
 as(1), ftnlx(1), explain(1), intro_directives(1), make(1),

 Cray Fortran Reference Manual

